By Topic

A joint vector and scalar potential formulation for driven high frequency problems using hybrid edge and nodal finite elements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Dyczij-Edlinger ; Graz Univ. of Technol., Austria ; O. Biro

An advanced A-V method employing edge-based finite elements for the vector potential A and nodal shape functions for the scalar potential V is proposed. Both gauged and ungauged formulations are considered. The novel scheme is particularly well suited for efficient iterative solvers such as the preconditioned conjugate gradient method, since it leads to significantly faster numerical convergence rates than pure edge element schemes. In contrast to nodal finite element implementations, spurious solutions do not occur and the inherent singularities of the electromagnetic fields in the vicinity of perfectly conducting edges and corners are handled correctly. Several numerical examples are presented to verify the suggested approach

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:44 ,  Issue: 1 )