By Topic

Naïve Bayes classification of adaptive broadband wireless modulation schemes with higher order cumulants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wong, M.L.D. ; Sch. of Eng. & Sci., Swinburne Univ. of Technol. ; Sie King Ting ; Nandi, A.K.

Adaptive modulation schemes have been proposed to optimize Shannon's channel capacity in recent orthogonal frequency division multiplexing (OFDM) based broadband wireless standard proposals. By adapting the modulation type (effectively changing the number of bits per symbol) at the transmitter end one can improve the bit error rate (BER) during transmission at designated SNR. Blind detection of the transmitted modulation type is desirable to optimise the bandwidth available at the receivers. Hence, there is a need for an intelligent modulation classification engine at the receiver end. In this work, we evaluate some higher order statistical measures coupled with a classical Naive Bayes classifier for fast identification of adaptive modulation schemes. We also benchmark the experimental results with the optimal Maximum Likelihood Classifier, and Support Vector Machine based Classifier using the same feature set.

Published in:

Signal Processing and Communication Systems, 2008. ICSPCS 2008. 2nd International Conference on

Date of Conference:

15-17 Dec. 2008