By Topic

Application of Scale Invariant Feature Transform to Image Spam Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Junwei Chen ; Dept. of Comput. Sci. & Technol., East China Normal Univ., Shanghai ; Lichun Zhang ; Yue Lu

Inspired by the keyword-based text filter, this paper proposes an image filter which detects the spam image by matching with user-specified image content. In this way, detecting image spam e-mail is converted into image matching process. Stable local feature detection and representation is a fundamental component of image matching algorithms. SIFT has been proven to be the most robust local invariant feature descriptor. In this process, SIFT algorithm is applied. The images are extracted with SIFT features, which are used to carry out the image matching work. Our experiments demonstrate that SIFT has a good performance in spam image recognition.

Published in:

Future Generation Communication and Networking Symposia, 2008. FGCNS '08. Second International Conference on  (Volume:3 )

Date of Conference:

13-15 Dec. 2008