By Topic

Generalized adaptive view-based appearance model: Integrated framework for monocular head pose estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Louis-Philippe Morency ; USC Institute for Creative Technologies, Marina del Rey, CA 90292, USA ; Jacob Whitehill ; Javier Movellan

Accurately estimating the person's head position and orientation is an important task for a wide range of applications such as driver awareness and human-robot interaction. Over the past two decades, many approaches have been suggested to solve this problem, each with its own advantages and disadvantages. In this paper, we present a probabilistic framework called generalized adaptive viewbased appearance model (GAVAM) which integrates the advantages from three of these approaches: (1) the automatic initialization and stability of static head pose estimation, (2) the relative precision and user-independence of differential registration, and (3) the robustness and bounded drift of keyframe tracking. In our experiments, we show how the GAVAM model can be used to estimate head position and orientation in real-time using a simple monocular camera. Our experiments on two previously published datasets show that the GAVAM framework can accurately track for a long period of time (>2 minutes) with an average accuracy of 3.5deg and 0.75 in with an inertial sensor and a 3D magnetic sensor.

Published in:

Automatic Face & Gesture Recognition, 2008. FG '08. 8th IEEE International Conference on

Date of Conference:

17-19 Sept. 2008