By Topic

Humans versus algorithms: Comparisons from the Face Recognition Vendor Test 2006

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alice J. O'Toole ; School of Behavioral & Brain Sciences, GR 4.1, Richardson, TX 75080-0688 USA ; P. Jonathon Phillips ; Abhijit Narvekar

We present a synopsis of results comparing the performance of humans with face recognition algorithms tested in the face recognition vendor test (FRVT) 2006 and face recognition grand challenge (FRGC). Algorithms and humans matched face identity in images taken under controlled and uncontrolled illumination. The human-machine comparisons include accuracy benchmarks, an error pattern analysis, and a test of human and machine performance stability across data sets varying in image quality. The results indicate that: (1.) machines can compete quantitatively with humans matching face identity across changes in illumination; (2.) qualitative differences between humans and machines can be exploited to improve identification by fusing human and machine match scores; and (3.) recognition skills for humans and machines are comparably stable across changes in image quality. Combined the results suggest that face recognition algorithms may be ready for applications with task constraints similar to those evaluated in the FRVT 2006.

Published in:

Automatic Face & Gesture Recognition, 2008. FG '08. 8th IEEE International Conference on

Date of Conference:

17-19 Sept. 2008