Cart (Loading....) | Create Account
Close category search window
 

Integrated Hybrid-PSO and Fuzzy-NN Decoupling Control for Temperature of Reheating Furnace

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ying-Xin Liao ; Sch. of Electron. & Inf. Eng., Central South Univ. of Forestry & Technol., Changsha ; Jin-hua She ; Min Wu

This paper presents an integrated method of intelligent decoupling control as a solution to the problem of adjusting the zone temperatures in a regenerative pusher-type reheating furnace. First, a recurrent neural network (NN) for estimating the zone temperatures and a heat transfer model for predicting billet temperatures are built based on data from actual furnace operations. Next, a decoupling strategy in combination with a fuzzy NN is used to control the zone temperatures. The architecture of the controller is based on a fuzzy c-means clustering approach; and the weights are optimized by a hybrid particle swarm optimization (HPSO) algorithm, which integrates the global optimization of density-based selection and the precise search of clonal expansion in an immune system with the fast local search of particle swarm optimization. HPSO is also used to optimize the zone temperature settings to minimize three items: fuel consumption, the temperature gradient within a billet, and the error between the mean and target temperatures of a billet at the furnace exit. The results of actual runs demonstrate the validity of this method.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 7 )

Date of Publication:

July 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.