By Topic

Investigation of Channel Backscattering Characteristics in Nanoscale Uniaxial-Strained PMOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Lee ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Pin Su

This paper examines channel backscattering characteristics for nanoscale strained and unstrained p-channel MOSFETs (PMOSFETs) using the experimentally extracted backscattering coefficients by our modified self-consistent temperature-dependent extraction method. Through comparing the gate voltage and temperature dependence, we demonstrate that channel backscattering can be reduced by the uniaxial strain for PFETs. Besides, we show that the strain-reduced conductivity effective mass may raise the thermal velocity, mean-free path, and effective mobility. Contrary to previous studies, our results indicate that the ballistic efficiency can be enhanced for compressive-strained PFETs. In addition, the backscattering effect on the electrostatic potential is discussed.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:8 ,  Issue: 6 )