Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

A Stochastic Model for the Optimal Operation of a Wind-Thermal Power System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pappala, V.S. ; Inst. of Electr. Power Syst., Univ. Duisburg-Essen, Duisburg ; Erlich, I. ; Rohrig, K. ; Dobschinski, J.

This paper presents a stochastic cost model and a solution technique for optimal scheduling of the generators in a wind integrated power system considering the demand and wind generation uncertainties. The proposed robust unit commitment solution methodology will help the power system operators in optimal day-ahead planning even with indeterminate information about the wind generation. A particle swarm optimization based scenario generation and reduction algorithm is used for modeling the uncertainties. The stochastic unit commitment problem is solved using a new parameter free self adaptive particle swarm optimization algorithm. The numerical results indicate the low risk involved in day-ahead power system planning when the stochastic model is used instead of the deterministic model.

Published in:

Power Systems, IEEE Transactions on  (Volume:24 ,  Issue: 2 )