By Topic

Analysis of optimal midcourse guidance law

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shih-Ming Yang ; Inst. of Aeronaut. & Astronaut., Nat. Cheng Kung Univ., Tainan, Taiwan

An optimal midcourse guidance law is presented that maximizes the final speed for missiles against a target at far distance or at low attitude in which the final speed is a prime factor. An explicit acceleration command is derived analytically in which the trajectory-dependent optimal control gains are written in terns of thrust, lift, drag, and intercept boundary condition. The optimal guidance law can be implemented either in airframe coordinates or inertia coordinates. It is shown that the acceleration commands with constant control gain are adequate when the range is relatively short; during midcourse guidance, however, the optimal control gains are required to enhance the performance.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:32 ,  Issue: 1 )