By Topic

Sequence comparison techniques for multisensor data fusion and target recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
E. W. Libby ; Air Force Inst. of Technol., Wright-Patterson AFB, OH, USA ; P. S. Maybeck

A new class of techniques for multisensor fusion and target recognition is proposed using sequence comparison by dynamic programming and multiple model estimation. The objective is to fuse information on the kinematic state and "nonkinematic" signature of unclassified targets, assessing the joint likelihood of all observed events for recognition. Relationships are shown to previous efforts in pattern recognition and state estimation. This research applies "classical" speech processing-related and other sequence comparison methods to moving target recognition, extends the efforts of previous researchers through improved fusion with kinematic information, relates the proposed techniques to Bayesian theory, and applies parameter identification methods to target recognition for improved understanding of the subject in general. The proposed techniques are evaluated and compared with existing approaches using the method of generalized ambiguity functions, which lends to a form of Cramer-Rao lower bound for target recognition.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:32 ,  Issue: 1 )