By Topic

GraphSig: A Scalable Approach to Mining Significant Subgraphs in Large Graph Databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ranu, S. ; Dept. of Comput. Sci., Univ. of California, Santa Barbara, CA ; Singh, A.K.

Graphs are being increasingly used to model a wide range of scientific data. Such widespread usage of graphs has generated considerable interest in mining patterns from graph databases. While an array of techniques exists to mine frequent patterns, we still lack a scalable approach to mine statistically significant patterns, specifically patterns with low p-values, that occur at low frequencies. We propose a highly scalable technique, called GraphSig, to mine significant subgraphs from large graph databases. We convert each graph into a set of feature vectors where each vector represents a region within the graph. Domain knowledge is used to select a meaningful feature set. Prior probabilities of features are computed empirically to evaluate statistical significance of patterns in the feature space. Following analysis in the feature space, only a small portion of the exponential search space is accessed for further analysis. This enables the use of existing frequent subgraph mining techniques to mine significant patterns in a scalable manner even when they are infrequent. Extensive experiments are carried out on the proposed techniques, and empirical results demonstrate that GraphSig is effective and efficient for mining significant patterns. To further demonstrate the power of significant patterns, we develop a classifier using patterns mined by GraphSig. Experimental results show that the proposed classifier achieves superior performance, both in terms of quality and computation cost, over state-of-the-art classifiers.

Published in:

Data Engineering, 2009. ICDE '09. IEEE 25th International Conference on

Date of Conference:

March 29 2009-April 2 2009