By Topic

Cylindrical Silicon-on-Insulator Microdosimeter: Design, Fabrication and TCAD Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Wee Han Lim ; Sch. of Electr. Eng. & Telecommun., Univ. of New South Wales, Sydney, NSW ; Ziebell, A.L. ; Cornelius, I. ; Reinhard, M.I.
more authors

A novel silicon-on-insulator (SOI) microdosimeter has been designed and fabricated using planar processing techniques to realise a device with a micron-scale well-defined sensitive volume. Cylindrical structures were employed to allow for an improved definition of the average chord length of the sensitive volume over that of previous elongated parallelepiped solid-state detector designs. The structures were manufactured on individual silicon mesas situated on top of a buried oxide insulating layer. The mesa design eliminated lateral charge diffusion. Two kinds of test structures were designed with sensitive region widths of 2 mum and 10 mum. In addition, an array of 900 cylindrical diodes was fabricated to increase the charge collection statistics. TCAD (Technology Computer Aided Design) modeling of the electrostatic potential and electric field profile of the cylindrical microdosimeter was carried out to obtain 3D potential and electric field profiles. The modeling revealed a radial electric field within the cylindrical-shaped sensitive volume with a 1/r dependence. While the electric field at the core of the cylindrical microdosimeter was not sufficiently high to induce avalanche signal multiplication, the higher electric field at the core should still assist in the measurement of low linear-energy transfer (LET) events.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:56 ,  Issue: 2 )