By Topic

A fast computation algorithm for the decision feedback equalizer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Inkyu Lee ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; Cioffi, J.M.

A novel fast algorithm for computing the minimum MSE decision feedback equalizer settings is proposed. The equalizer filters are computed indirectly, first by estimating the channel, and then by computing the coefficients in the frequency domain with the discrete Fourier transform (DFT). Approximating the correlation matrices by circulant matrices facilitates the whole computation with very small performance loss. The fractionally spaced equalizer settings are derived. The performance of the fast algorithm is evaluated through simulation. The effects of the channel estimation error and finite precision arithmetic are briefly analyzed. Results of simulation show the superiority of the proposed scheme

Published in:

Communications, IEEE Transactions on  (Volume:43 ,  Issue: 11 )