Cart (Loading....) | Create Account
Close category search window

Computation of the Helmholtz Eigenvalues in a Class of Chaotic Cavities Using the Multipole Expansion Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seydou, F. ; Dept. of Electr. & Inf. Eng., Univ. of Oulu, Oulu ; Seppa╠łnen, T. ; Ramahi, Omar M.

In this paper, we present a numerical computation of the energy levels and the corresponding wave functions in a microwave resonator using the multipole expansion technique. The approach permits closed form, fast, and robust solutions of the Helmholtz equation (and the Schrodinger equation for two-dimensional systems) in an important class of wave chaos problem. In particular, wave functions inside the billiard are expressed in terms of a simple expansion of Hankel functions. The implementation of the approach is described, and the classical bowtie cavity is considered as a case study to demonstrate the versatility and efficiency of the method. To validate the accuracy, the field distribution and the eigenvalues calculated using this approach are compared to the solution obtained by boundary integral method. The case when the cavity contains objects (perfect electric conductors and/or dielectrics) is also presented and discussed.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:57 ,  Issue: 4 )

Date of Publication:

April 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.