By Topic

Comparison of diversity with simple block coding on correlated frequency-selective fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abu-Dayya, A.A. ; Dept. of Electr. Eng., Queen''s Univ., Kingston, Ont., Canada ; Beaulieu, N.C.

We investigate the effects of correlation on the performance of diversity systems in wideband wireless radio environments. Specifically, the average bit error rate (BER) performance of M-ary differential phase shift keying (MDPSK) on correlated frequency-selective slow Rayleigh fading channels is analyzed. A two-branch diversity receiver with postdetection equal gain combining is considered. Nyquist pulse shaping is used and differential detection is employed at the receiver. The effects of cochannel interference on the system performance are assessed using a Gaussian interference model. To further enhance the system performance, the effects of combined diversity and forward error correction (FEC) coding on the average BER are investigated. Results using short cyclic block codes with perfect bit interleaving are obtained. The effects of the root mean square (RMS) delay spread, the amount of correlation, and the level of modulation, M, on the average BER are investigated in detail for both coded and uncoded systems. The results show that dual branch diversity combining with a correlation coefficient of 0.5 outperforms (in terms of BER) short block codes with perfect bit interleaving, and that combined diversity and coding strategies are effective in combatting the effects of frequency-selective fading

Published in:

Communications, IEEE Transactions on  (Volume:43 ,  Issue: 11 )