By Topic

Fabrication, Structural Characterization and Testing of a Nanostructured Tin Oxide Gas Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Partridge, J.G. ; Sch. of Appl. Sci., R. Melbourne Inst. of Technol., Melbourne, VIC ; Field, M.R. ; Sadek, A.Z. ; Kalantar-zadeh, K.
more authors

A nanostructured SnO2 conductometric gas sensor was produced from thermally evaporated Sn clusters using a thermal oxidation process. SnO2 clusters were simultaneously formed in an identical process on a Si3N4 membrane featuring an aperture created by a focused ion beam (FIB). Clusters attached to the vertical edges of the aperture were imaged using a transmission electron microscope. The original morphology of the Sn cluster film was largely preserved after the thermal oxidation process and the thermally oxidized clusters were found to be polycrystalline and rutile in structure. NO2 gas sensing measurements were performed with the sensor operating at various temperatures between 25degC and 290degC. At an operating temperature of 210degC, the sensor demonstrated a normalized change in resistance of 3.1 upon exposure to 510 ppb of NO2 gas. The minimum response and recovery times for this exposure were 45 s and 30 s at an operating temperature of 265degC. The performance of the SnO2 sensor compared favorably with previously published results. Finally, secondary ion mass spectrometry and X-ray photoelectron spectroscopy were used to establish the levels of nitrogen present in the films following exposure to NO2 gas.

Published in:

Sensors Journal, IEEE  (Volume:9 ,  Issue: 5 )