Cart (Loading....) | Create Account
Close category search window
 

PID-Like Neural Network Nonlinear Adaptive Control for Uncertain Multivariable Motion Control Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cong, S. ; Dept. of Autom., Univ. of Sci. & Technol. of China, Hefei, China ; Liang, Y.

A mix locally recurrent neural network was used to create a proportional-integral-derivative (PID)-like neural network nonlinear adaptive controller for uncertain multivariable single-input/multi-output system. It is composed of a neural network with no more than three neural nodes in hidden layer, and there are included an activation feedback and an output feedback, respectively, in a hidden layer. Such a special structure makes the exterior feature of the neural network controller able to become a P, PI, PD, or PID controller as needed. The closed-loop error between directly measured output and expected value of the system is chosen to be the input of the controller. Only a group of initial weights values, which can run the controlled closed-loop system stably, are required to be determined. The proposed controller can update weights of the neural network online according to errors caused by uncertain factors of system such as modeling error and external disturbance, based on stable learning rate. The resilient back-propagation algorithm with sign instead of the gradient is used to update the network weights. The basic ideas, techniques, and system stability proof were presented in detail. Finally, actual experiments both of single and double inverted pendulums were implemented, and the comparison of effectiveness between the proposed controller and the linear optimal regulator were given.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.