By Topic

Nonlinear Variable Structure Filter for the Online Trajectory Scaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oscar Gerelli ; Dipt. di Ing. dell'Inf., Univ. of Parma, Parma, Italy ; Corrado Guarino Lo Bianco

Time efficiency and accurate path tracking represent two conflicting demands typical of robotic applications: Time efficiency induces one to plan extremely fast trajectories which can easily collide with the manipulator kinematic and dynamic constraints, thus causing a reduction of accuracy. To deal with this problem, several approaches can be found in the literature mainly based on the synthesis of dynamic filters used for the online trajectory scaling: A possibly unfeasible input trajectory is automatically scaled to fulfill given dynamic bounds. In this way, an accurate path tracking is guaranteed. This paper can be collocated in such a framework. A new discrete-time filter, with novel capabilities, is designed. Differently from other proposals, not only torque constraints are considered but also kinematic constraints are easily handled. Moreover, to preserve time efficiency, the new filter always attempts to recover any delay caused by the constraints.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:56 ,  Issue: 10 )