Cart (Loading....) | Create Account
Close category search window
 

Adaptive Cancellation of Floor Vibrations in Standing Ballistocardiogram Measurements Using a Seismic Sensor as a Noise Reference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Inan, O.T. ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA ; Etemadi, M. ; Widrow, B. ; Kovacs, G.T.A.

An adaptive noise canceller was used to reduce the effect of floor vibrations on ballistocardiogram (BCG) measurements from a modified electronic bathroom scale. A seismic sensor was placed next to the scale on the floor and used as the noise reference input to the noise canceller. BCG recordings were acquired from a healthy subject while another person stomped around the scale, thus causing increased floor vibrations. The noise canceller substantially eliminated the artifacts in the BCG signal due to these vibrations without distorting the morphology of the measured BCG. Additionally, recordings were obtained from another subject standing inside a parked bus while the engine was running. The artifacts due to the vibrations of the engine, and the other vehicles moving on the road next to the bus, were also effectively eliminated by the noise canceller. The system with automatic floor vibration cancellation could be used to increase BCG measurement robustness in home monitoring applications. Additionally, the noise cancellation approach may enable BCG recording in ambulances-or other transport vehicles-where noninvasive hemodynamic monitoring may otherwise not be feasible.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:57 ,  Issue: 3 )

Date of Publication:

March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.