By Topic

Design, Fabrication, and Performance of a Piezoelectric Uniflex Microactuator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Hareesh K. R. Kommepalli ; Dept. of Mech. & Nucl. Eng., Pennsylvania State Univ., University Park, PA ; Han G. Yu ; Christopher L. Muhlstein ; Susan Trolier-McKinstry
more authors

Microactuators provide controlled motion and force for applications ranging from radio frequency switches to microfluidic valves. Large amplitude response in piezoelectric actuators requires amplification of the small strain, exhibited by the piezoelectric material, used in the construction of such actuators. This paper studies a uniflex microactuator that combines the strain amplification mechanisms of a unimorph and flexural motion to produce large displacement and blocking force. The design and fabrication of the proposed uniflex microactuator are described in detail. An analytical model is developed with three connected beams and a reflective symmetric boundary condition that predicts actuator displacement and blocking force as a function of the applied voltage. The model shows that the uniflex design requires appropriate parameter ranges, particularly the clearance between the unimorph and aluminum cap, to ensure that both the unimorph and flexural amplification effects are realized. With a weakened joint at the unimorph/cap interface, the model is found to predict the displacement and blocking force for the actuators fabricated in this work.

Published in:

Journal of Microelectromechanical Systems  (Volume:18 ,  Issue: 3 )