By Topic

Focusing of Airborne Synthetic Aperture Radar Data From Highly Nonlinear Flight Tracks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Frey, O. ; Remote Sensing Labs., Univ. of Zurich, Zurich ; Magnard, C. ; Ruegg, M. ; Meier, E.

Standard focusing of data from synthetic aperture radar (SAR) assumes a straight recording track of the sensor platform. Small nonlinearities of airborne platform tracks are corrected for during a motion-compensation step while maintaining the assumption of a linear flight path. This paper describes the processing of SAR data acquired from nonlinear tracks, typical of sensors mounted on small aircraft or drones flying at low altitude. Such aircraft do not fly along straight tracks, but the trajectory depends on topography, influences of weather and wind, or the shape of areas of interest such as rivers or traffic routes. Two potential approaches for processing SAR data from such highly nonlinear flight tracks are proposed, namely, a patchwise frequency-domain processing and mosaicking technique and a time-domain back-projection-based technique. Both are evaluated with the help of experimental data featuring tracks with altitude changes, a double bend, a 90deg curve, and a linear flight track. In order to assess the quality of the focused data, close-ups of amplitude images are compared, impulse response functions of a point target are analyzed, and the coherence is evaluated. The experimental data were acquired by the German Aerospace Center's E-SAR L-band system.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:47 ,  Issue: 6 )