By Topic

Investigation on Self-Heating Effect in Gate-All-Around Silicon Nanowire MOSFETs From Top-Down Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Runsheng Wang ; Inst. of Microelectron., Peking Univ., Beijing ; Jing Zhuge ; Ru Huang ; Dong-Won Kim
more authors

The self-heating effect is becoming a critical concern for nanoscaled devices with low dimensions. In this letter, the self-heating effect is experimentally investigated in gate-all-around (GAA) silicon nanowire MOSFETs (SNWTs) fabricated from the CMOS-compatible top-down approach. With the multifinger and multiwire test structure, the impact of the self-heating effect is successfully characterized. The results indicate that even if the SNWT is fabricated on the bulk silicon substrate, the impact of the self-heating effect is comparable or even a little bit worse than that in SOI devices, probably due to the 1-D nature of nanowire and increased phonon-boundary scattering in the GAA architecture.

Published in:

Electron Device Letters, IEEE  (Volume:30 ,  Issue: 5 )