By Topic

Generalized Butterfly Graph and Its Application to Video Stream Authentication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhang, Z. ; Hewlett-Packard, Shanghai, China ; Sun, Q. ; Apostolopoulos, J. ; Wai-Choong Wong

This paper presents the generalized butterfly graph (GBG) and its application to video stream authentication. Compared with the original butterfly graph, the proposed GBG provides significantly increased flexibility, which is necessary for streaming applications, including supporting arbitrary bit-rate budget for authentication and arbitrary number of video packets. Within the GBG design, the problem of constructing an authentication graph is defined as follows: given the total number of packets to protect, the expected packet loss rate for the network, and the available overhead budget, how should one design the authentication graph to maximize the probability that the received packets are verifiable? Furthermore, given the fact that media packets are typically of unequal importance, we explore two variants of the GBG authentication, packet sorting and unequal authentication protection, which apply unequal treatment to different packets based on their importance. Lastly, we examine how the proposed GBG authentication can be applied within the context of rate-distortion-authentication (R-D-A) optimized streaming: given a media stream protected by GBG authentication, the R-D-A optimized streaming technique computes an optimized transmission schedule by recognizing and accounting for the authentication dependencies in the GBG authentication graph.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:19 ,  Issue: 7 )