By Topic

Real-Time Illegal Parking Detection in Outdoor Environments Using 1-D Transformation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lee, J.T. ; Dept. of Electr. & Comput. Eng., Univ. of Texas (UT), Austin, TX, USA ; Ryoo, M.S. ; Riley, M. ; Aggarwal, J.K.

With decreasing costs of high-quality surveillance systems, human activity detection and tracking has become increasingly practical. Accordingly, automated systems have been designed for numerous detection tasks, but the task of detecting illegally parked vehicles has been left largely to the human operators of surveillance systems. We propose a methodology for detecting this event in real time by applying a novel image projection that reduces the dimensionality of the data and, thus, reduces the computational complexity of the segmentation and tracking processes. After event detection, we invert the transformation to recover the original appearance of the vehicle and to allow for further processing that may require 2-D data. We evaluate the performance of our algorithm using the i-LIDS vehicle detection challenge datasets as well as videos we have taken ourselves. These videos test the algorithm in a variety of outdoor conditions, including nighttime video and instances of sudden changes in weather.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:19 ,  Issue: 7 )