Cart (Loading....) | Create Account
Close category search window
 

Computational Design of Asymmetric Electron Beam Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Ives, R.L. ; Calabazas Creek Res., Inc., San Mateo, CA ; Attarian, A. ; Thuc Bui ; Read, M.
more authors

Three-dimensional design codes are allowing the development of more complex electron beam devices with significant performance improvements over axially symmetric devices. Distributed beam RF devices, including multiple-beam and sheet-beam designs, allow significant reduction in operating voltage with improved efficiency and bandwidth. The increased parameter space, however, makes the design process extremely complicated and costly. This paper describes optimization techniques to automate the most time-consuming tasks of the design, which is searching the available parameter space to optimize performance. Both sheet-beam and multiple-beam designs are considered.

Published in:

Electron Devices, IEEE Transactions on  (Volume:56 ,  Issue: 5 )

Date of Publication:

May 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.