By Topic

Fast LMS/Newton Algorithms for Stereophonic Acoustic Echo Cancelation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Harsha I. K. Rao ; Dept. of Electr. & Comput. Eng., Univ. of Utah, Salt Lake City, UT, USA ; Behrouz Farhang-Boroujeny

This paper presents a new class of adaptive filtering algorithms to solve the stereophonic acoustic echo cancelation (AEC) problem in teleconferencing systems. While stereophonic AEC may be seen as a simple generalization of the well-known single-channel AEC, it is a fundamentally far more complex and challenging problem to solve. The main reason being the strong cross correlation that exists between the two input audio channels. In the past, nonlinearities have been introduced to reduce this correlation. However, nonlinearities bring with it additional harmonics that are undesirable. We propose an elegant linear technique to decorrelate the two-channel input signals and thus avoid the undesirable nonlinear distortions. We derive two low complexity adaptive algorithms based on the two-channel gradient lattice algorithm. The models assume the input sequences to the adaptive filters to be autoregressive (AR) processes whose orders are much lower than the lengths of the adaptive filters. This results in an algorithm, whose complexity is only slightly higher than the normalized least-mean-square (NLMS) algorithm; the simplest adaptive filtering method. Simulation results show that the proposed algorithms perform favorably when compared with the state-of-the-art algorithms.

Published in:

IEEE Transactions on Signal Processing  (Volume:57 ,  Issue: 8 )