By Topic

Generalized Competitive Learning of Gaussian Mixture Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhiwu Lu ; Dept. of Comput. Sci., City Univ. of Hong Kong, Kowloon ; Horace H. S. Ip

When fitting Gaussian mixtures to multivariate data, it is crucial to select the appropriate number of Gaussians, which is generally referred to as the model selection problem. Under regularization theory, we aim to solve this model selection problem through developing an entropy regularized likelihood (ERL) learning on Gaussian mixtures. We further present a gradient algorithm for this ERL learning. Through some theoretic analysis, we have shown a mechanism of generalized competitive learning that is inherent in the ERL learning, which can lead to automatic model selection on Gaussian mixtures and also make our ERL learning algorithm less sensitive to the initialization as compared to the standard expectation-maximization algorithm. The experiments on simulated data using our algorithm verified our theoretic analysis. Moreover, our ERL learning algorithm has been shown to outperform other competitive learning algorithms in the application of unsupervised image segmentation.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:39 ,  Issue: 4 )