By Topic

Is 25 Gb/s On-Board Signaling Viable?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Kam, D.G. ; IBM T. J. Watson Res. Center, Yorktown Heights, NY ; Ritter, M.B. ; Beukema, T.J. ; Bulzacchelli, J.F.
more authors

What package improvements are required for dense, high-aggregate bandwidth buses running at data rates beyond 10 Gb/s per channel, and when might optical interconnects on the board be required? We present a study of distance and speed limits for electrical on-board module-to-module links with an eye to answering these questions. Hardware-validated models of advanced organic modules and printed circuit boards were used to explore these limits. Simulations of link performance performed with an internal link modeling tool allowed us to explore the effect of equalization and modulation formats at different data rates on link bit error rate and eye opening. Our link models have been validated with active, high-speed differential bus measurements utilizing a 16-channel link chip with programmable equalization and a per-channel data rate of up to 11 Gb/s. Electrical signaling limits were then determined by extrapolating these hardware-correlated models to higher speeds, and these limits were compared to the results of recent work on on-board optical interconnects.

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:32 ,  Issue: 2 )