Cart (Loading....) | Create Account
Close category search window
 

Anomaly prediction in network traffic using adaptive Wiener filtering and ARMA modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Celenk, M. ; Sch. of Electr. Eng. & Comput. Sci., Ohio Univ., Athens, OH ; Conley, T. ; Graham, J. ; Willis, J.

Fast and efficient detection of anomalies is essential for maintaining a robust and secure network. This research presents a method of anomaly detection based on adaptive Wiener filtering of noise followed by ARMA modeling of network flow data. We dynamically calculate noise and traffic signal statistics using network-monitoring metrics for traffic features such as average port, high port, server ports, and peered ports. The underlying approach is tested on near-real-time Internet traffic in the wide-area network (WAN) of Ohio University. The average port feature is determined to be the most informative measure in the estimation process. High port, server ports, and peered ports are used for confirmation of the anomaly detection result. We empirically determine that most of the network features obey Gaussian-like distributions. Experiments reveal that the method is highly effective in predicting anomalies in network traffic flow and preventing any hazard that they may cause.

Published in:

Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on

Date of Conference:

12-15 Oct. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.