By Topic

A multiobjective genetic algorithm for Assembly Line Balancing problem with worker allocation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wenqiang Zhang ; Grad. Sch. of Inf., Production & Syst., Waseda Univ., Kitakyushu ; Gen, M. ; Lin Lin

The Assembly Line Balancing (ALB) problem is a well-known manufacturing optimization problem, which determines the assignment of various tasks to an ordered sequence of stations, while optimizing one or more objectives without violating restrictions imposed on the line. As Genetic Algorithms (GAs) have established themselves as a useful optimization technique in the manufacturing field, the application of GAs to ALB problem has expanded a lot. This paper describes a generalized Pareto-based scale-independent fitness function (gp-siffGA) for solving ALB problem with worker allocation (ALB-wa) to minimize the cycle time, the variation of workload and the total cost under the constraint of precedence relationships at the same time. For this approach, first a random key-based representation method adapting the GA was proposed. Following, advanced genetic operators adapted to the specific chromosome structure and the characteristics of the ALB-wa problem were used. Moreover, Pareto dominance relationship was used to solve the ALB-wa problem without using relative preferences of multiple objectives. Finally, the performance of proposed method was validated through numerical experiments. The results indicated that the proposed approach improved the quality of solutions more than the other existing GA approaches.

Published in:

Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on

Date of Conference:

12-15 Oct. 2008