By Topic

Legendre-FLANN-based nonlinear channel equalization in wireless communication system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Patra, J.C. ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore ; Chin, W.C. ; Meher, P.K. ; Chakraborty, G.

In this paper, we present the result of our study on the application of artificial neural networks (ANNs) for adaptive channel equalization in a digital communication system using 4-quadrature amplitude modulation (QAM) signal constellation. We propose a novel single-layer Legendre functional-link ANN (L-FLANN) by using Legendre polynomials to expand the input space into a higher dimension. A performance comparison was carried out with extensive computer simulations between different ANN-based equalizers, such as, radial basis function (RBF), Chebyshev neural network (ChNN) and the proposed L-FLANN along with a linear least mean square (LMS) finite impulse response (FIR) adaptive filter-based equalizer. The performance indicators include the mean square error (MSE), bit error rate (BER), and computational complexities of the different architectures as well as the eye patterns of the various equalizers. It is shown that the L-FLANN exhibited excellent results in terms of the MSE, BER and the computational complexity of the networks.

Published in:

Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on

Date of Conference:

12-15 Oct. 2008