By Topic

A new method for multiple fuzzy rules interpolation with weighted antecedent variables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu-Chuan Chang ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei ; Shyi-Ming Chen

Fuzzy rule interpolation techniques have been used to handle the problems of sparse fuzzy rule bases in sparse fuzzy rule-based systems. In the existing fuzzy rule interpolation methods, there are many variables in the antecedents of fuzzy rules, where the variables in the antecedents of fuzzy rules have the same weight. If we can handle fuzzy rule interpolation with weighted antecedent variables, then there is room for more flexibility. In this paper, we present a new method for multiple fuzzy rules interpolation with weighted antecedent variables. The proposed method not only can handle fuzzy rule interpolation with polygonal membership functions, but also can preserve the convexity of fuzzy interpolative reasoning results. The fuzzy interpolative reasoning results of the proposed method also satisfy the logically consistency with respect to the ratios of fuzziness. The experimental result shows that the proposed method can generate reasonable fuzzy interpolative reasoning results for sparse fuzzy rule-based systems with weighted antecedent variables. The proposed method provides us a useful way for fuzzy rule interpolation in sparse fuzzy rule-based systems with weighted antecedent variables.

Published in:

Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on

Date of Conference:

12-15 Oct. 2008