Cart (Loading....) | Create Account
Close category search window
 

Beam Shaping of Single-Mode and Multimode Fiber Amplifier Arrays for Propagation Through Atmospheric Turbulence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Jolivet, V. ; Dept. Opt. Theor. et Appl., Office Nat. d''Etudes et de Recherches Aerospatiales (ONERA), Palaiseau ; Bourdon, P. ; Bennai, B. ; Lombard, L.
more authors

We report experimental results and theoretical analysis of coherent beam combining with active phase control fiber beam shaping. An original optical configuration for target-in-the-loop single-mode fiber amplifier coherent combining through turbulence is presented, with a lambda/15 residual phase error. The experimental results and theoretical analysis demonstrate that detection subsystem aperture reduction is paramount to lower sensitivity to backward turbulence when using a detector in the laser emitter plane. In this configuration, coherent combining is achieved on a remote scattering surface with sole compensation of the onward turbulence. We also present a numerical model capable of assessing the combining efficiency in the case of high-power multimode large-mode-area (LMA) fiber amplifiers. Preliminary theoretical investigations point out that multiple-transverse-mode combining can result in severe wavefront distortion. In the case of multimode LMA fibers, control of the transverse modes phase relationship has to be achieved to preserve combining efficiency.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:15 ,  Issue: 2 )

Date of Publication:

March-april 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.