Cart (Loading....) | Create Account
Close category search window
 

Evaluating the Influence of Haptic Force-Feedback on 3D Selection Tasks using Natural Egocentric Gestures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pawar, V.M. ; Dept. of Comput. Sci., Univ. Coll. London, London ; Steed, A.

Immersive virtual environments (IVEs) allow participants to interact with their 3D surroundings using natural hand gestures. Previous work shows that the addition of haptic feedback cues improves performance on certain 3D tasks. However, we believe this is not true for all situations. Depending on the difficulty of the task, we suggest that we should expect differences in the ballistic movement of our hands when presented with different types of haptic force-feedback conditions. We investigated how hard, soft and no haptic force-feedback responses, experienced when in contact with the surface of an object, affected user performance on a task involving selection of multiple targets. To do this, we implemented a natural egocentric selection interaction technique by integrating a two-handed large-scale force-feedback device in to a CAVETM-like IVE system. With this, we performed a user study where we show that participants perform selection tasks best when interacting with targets that exert soft haptic force-feedback cues. For targets that have hard and no force-feedback properties, we highlight certain associated hand movement that participants make under these conditions, that we hypothesise reduce their performance.

Published in:

Virtual Reality Conference, 2009. VR 2009. IEEE

Date of Conference:

14-18 March 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.