By Topic

Bilateral Energy Transfer for high fidelity haptic telemanipulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jordi Artigas ; Institute of Robotics and Mechatronics, DLR - German Aerospace Center, Munich, Germany ; Carsten Preusche ; Gerd Hirzinger ; Gianni Borghesan
more authors

Among the methods to grant the stability of a telemanipulation system, the bilateral time domain passivity framework has the appealing characteristic to consider both, force and velocity signals exchanged between master and slave systems, and the power introduced or dissipated by the elements that compose the telemanipulation system. In previous works, it has been shown how the bilateral passivity controller (BiPC) can preserve stability when the communication channel that conveys data between master and slave is affected by delay. In this work the authors intend to further explore the possibilities offered by the Bilateral Energy Transfer concept as design guideline, and to refine the control schemes already discussed in. The underlying idea of the Bilateral Energy Transfer is to achieve a transport of energy between the two sides of the real system as faithful to an ldquoidealrdquo (not delayed) system as allowed by the energy leaks. As energy leak is meant the behavior introduced by the not ideality of some components, such as the communication channel. At the same time, in order to obtain easy-to-use system, the control system must preserve, in some extend, the force, velocity, and position correspondences between master and slave. In order to achieve this goal, a modified version of passivity controller is presented. Its main characteristic is that its correction action aimed at dissipating energy, regarded as generated by energy leaks, is limited and deferred in time. Moreover, a drift compensator is introduced whose role is to solve a drift in position introduced by the operation of the same BiPC; in order to maintain the whole system passive, the action of this controller is bounded to the amount of energy that has been dissipated in excess by the BiPC.

Published in:

EuroHaptics conference, 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics 2009. Third Joint

Date of Conference:

18-20 March 2009