By Topic

Toward tactilely transparent gloves: Collocated slip sensing and vibrotactile actuation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Romano, J.M. ; GRASP Lab., Univ. of Pennsylvania, Philadelphia, PA ; Gray, S.R. ; Jacobs, N.T. ; Kuchenbecker, K.J.

Tactile information plays a critical role in the human ability to manipulate objects with one's hands. Many environments require the use of protective gloves that diminish essential tactile feedback. Under these circumstances, seemingly simple tasks such as picking up an object can become very difficult. This paper introduces the SlipGlove, a novel device that uses an advanced sensing and actuation system to return this vital tactile information to the user. Our SlipGlove prototypes focus on providing tactile cues associated with slip between the glove and a contact surface. Relative motion is sensed using optical mouse sensors embedded in the glove's surface. This information is conveyed to the wearer via miniature vibration motors placed inside the glove against the wearer's skin. The collocation of slip sensing and tactile feedback creates a system that is natural and intuitive to use. We report results from a human subject study demonstrating that the SlipGlove allows the wearer to approach the capabilities of bare skin in detecting and reacting to fingertip slip. Users of the SlipGlove also had significantly faster and more consistent reaction to fingertip slip when compared to a traditional glove design. The SlipGlove technology allows us to enhance human perception when interacting with real environments and move toward the goal of a tactilely transparent glove.

Published in:

EuroHaptics conference, 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics 2009. Third Joint

Date of Conference:

18-20 March 2009