By Topic

Haptic rendering of complex deformations through handle-space force linearization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Garre, C. ; URJC Madrid, Madrid ; Otaduy, M.A.

The force-update-rate requirements of transparent rendering of virtual environments are in conflict with the computational cost required for computing complex interactions between deforming objects. In this paper we introduce a novel method for satisfying high force update rates with deformable objects, yet retaining the visual quality of complex deformations and interactions. The objects that are haptically manipulated may have many degrees of freedom, but haptic interaction is often implemented in practice through low-dimensional force-feedback devices. We exploit the low-dimensional domain of the interaction for devising a novel linear approximation of interaction forces that can be efficiently evaluated at force-update rates. Moreover, our linearized force model is time-implicit, which implies that it accounts for contact constraints and the internal dynamics of deforming objects. In this paper we show examples of haptic interaction in complex situations such as large deformations, collision between deformable objects (with friction), or even self-collision.

Published in:

EuroHaptics conference, 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics 2009. Third Joint

Date of Conference:

18-20 March 2009