By Topic

Application of Support Vector Machine with Modified Gaussian Kernel in A Noise-Robust Speech Recognition System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jing Bai ; Coll. of Inf. Eng., Taiyuan Univ. of Technol., Taiyuan ; Xue-ying Zhang ; Ji-kang Duan

To improve the generalization ability of the machine learning and solve the problem that recognition rates of the speech recognition system become worse in the noisy environment, a modified Gaussian kernel function which may pay attention to the similar degree between sample space and feature space is proposed. In this paper, used the modified Gaussian kernel support vector machine to a speech recognition system for Chinese isolated words, non-specific person and middle glossary quantity and chose the improved noise-robust MFCC parameters as the speech feature, used "one-against-one" method for the multi-class classification problem of SVM, and analyzed the influence of Gaussian kernel parameter gamma and error penalty parameter C on SVM generalization ability. Experiments indicate that the recognition rates of SVM which chose the best parameters and modified Gaussian kernel are much better than those of traditional HMM model and RBF network. The robustness is better too.

Published in:

Knowledge Acquisition and Modeling Workshop, 2008. KAM Workshop 2008. IEEE International Symposium on

Date of Conference:

21-22 Dec. 2008