By Topic

3D-GCP: An analytical model for the impact of process variations on the critical path delay distribution of 3D ICs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Garg, Siddharth ; Dept. of ECE, Carnegie-Mellon Univ., Pittsburgh, PA ; Marculescu, D.

3D Integrated Circuits (ICs) have been recently proposed as a solution to the increasing wire delay concerns in scaled technologies. At the same time, technology scaling leads to increasing variability in manufacturing process parameters, making it imperative to quantify the impact of these variations on performance. In this work, we take, to the best of our knowledge, the first step towards formally modeling the impact of process variations on the clock frequency of fully-synchronous (FS) 3D ICs. The proposed analytical models demonstrate theoretically and experimentally that 3D designs behave very differently under the impact of process variations as compared to equivalent 2D designs. In particular, for the same number of critical paths, we show that a 3D design is always less likely to meet a pre-defined frequency target compared to its 2D counterpart. Furthermore, as opposed to models for 2D ICs, the 3D models need to accurately account for not only within-die (WID) critical paths, i.e., paths that lie entirely within one of the die layers, but also D2D critical paths that use through-silicon vias (TSVs) to span across multiple dies in the 3D stack. Finally, we show, theoretically and experimentally, that the mapping of critical paths to the die layers of a 3D IC can also affect the timing yield of a design, while the mapping issue does not arise in the 2D case since there is only a single die layer in a 2D IC. The accuracy of the proposed models is experimentally verified and found to be in excellent agreement with detailed SPICE and gate-level Monte Carlo (MC) simulations.

Published in:

Quality of Electronic Design, 2009. ISQED 2009. Quality Electronic Design

Date of Conference:

16-18 March 2009