By Topic

Polarization-, Wavelength-, and Filter-Free All-Optical Clock Recovery in a Passively Mode-Locked Laser Diode With Orthogonally Pumped Polarization-Diversity Configuration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Arahira, S. ; Corp. Res. & Dev. Center, Oki Electr. Ind. Co., Ltd., Tokyo ; Takahashi, H. ; Nakamura, K. ; Yaegashi, H.
more authors

We proposed and demonstrated all-optical clock recovery system using a monolithic mode-locked laser diode (MLLD) that operated with less sensitivity to the polarization and the wavelength of the input data signals also with no bandpass filter to eliminate the input signal-components. The keys to this new technique are the MLLD integrated with a tensile-strained quantum-well saturable absorber and a new polarization-diversity setup by signal input orthogonally polarized to the lasing polarization of the MLLD. This approach was experimentally validated in the 40 Gbps clock recovery experiments. The results exhibited excellent performance of the clock recovery with low timing jitters (<0.3 ps) remaining small dependence on the wavelength and the polarization of the input data signals and input-signal suppression less than -30 dB with no use of the bandpass filter. We also succeeded in the stable clock recovery for the input of polarization-scrambled data signals.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:45 ,  Issue: 5 )