Cart (Loading....) | Create Account
Close category search window

Carbon-Nanotube Growth in Alcohol-Vapor Plasma

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Suda, Yoshiyuki ; Grad. Sch. of Inf. Sci. & Technol., Hokkaido Univ., Sapporo ; Okita, Atsushi ; Takayama, J. ; Oda, Akinori
more authors

We have successfully grown carbon nanotubes (CNTs) by plasma-enhanced chemical vapor deposition (PECVD) using alcohol. When 0.01-wt% ferrocene was added to the alcohol, vertically aligned CNTs grew at 650degC. By contrast, a few CNTs and mostly carbon nanoparticles were obtained by pure alcohol PECVD even though the Fe catalyst was coated on Si substrates. Comparing this PECVD experiment with thermal alcohol CVD showed that only the PECVD method can be used to grow CNTs under the reported experimental conditions. To understand the plasma properties for CNT growth, particularly plasma species contained in a gas phase of alcohol plasma, the plasma was analyzed using optical-emission spectroscopy (OES) and quadrupole mass spectrometry (QMS). From the OES measurement, emission peaks from the excitation states of C2, CH, CHO, CH2O, CO, H, O2, C+, and CO+ were identified, while the QMS measurement also showed the existence of H2, O, and CO. These results indicate that, in alcohol plasma, oxidants and reductants exist together and potentially promote/suppress CNT growth depending on the process conditions. The contribution of CxHy (x ges 1, y ges 3) radicals, which were produced by decomposition reactions in alcohol plasma as a CNT precursor, is discussed.

Published in:

Plasma Science, IEEE Transactions on  (Volume:37 ,  Issue: 7 )

Date of Publication:

July 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.