By Topic

Improved Emotion Recognition With a Novel Speaker-Independent Feature

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Eun Ho Kim ; Dept. of Mech. Eng., Korea Adv. Inst. of Sci. & Technol., Daejeon ; Kyung Hak Hyun ; Soo Hyun Kim ; Yoon Keun Kwak

Emotion recognition is one of the latest challenges in human-robot interaction. This paper describes the realization of emotional interaction for a Thinking Robot, focusing on speech emotion recognition. In general, speaker-independent systems show a lower accuracy rate compared with speaker-dependent systems, as emotional feature values depend on the speaker and their gender. However, speaker-independent systems are required for commercial applications. In this paper, a novel speaker-independent feature, the ratio of a spectral flatness measure to a spectral center (RSS), with a small variation in speakers when constructing a speaker-independent system is proposed. Gender and emotion are hierarchically classified by using the proposed feature (RSS), pitch, energy, and the mel frequency cepstral coefficients. An average recognition rate of 57.2% (plusmn 5.7%) at a 90% confidence interval is achieved with the proposed system in the speaker-independent mode.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:14 ,  Issue: 3 )