By Topic

Deriving principles of microbiology by multiscaling laws of molecular physics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

It has long been an objective of the physical sciences to derive principles of biology from the laws of physics. At the angstrom scale for processes evolving on timescales of 10-14 s, many systems can be characterized in terms of atomic vibrations and collisions. In contrast, biological systems display dramatic transformations including self-assembly and reorganization from one cell phenotype to another as the microenvironment changes. We have developed a framework for understanding the emergence of living systems from the underlying atomic chaos.

Published in:

Engineering in Medicine and Biology Magazine, IEEE  (Volume:28 ,  Issue: 2 )