By Topic

Effective Fuzzy Clustering Algorithm for Abnormal MR Brain Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hemanth, D.J. ; Karunya Univ., Coimbatore ; Selvathi, D. ; Anitha, J.

Clustering approach is widely used in biomedical applications particularly for brain tumor detection in abnormal magnetic resonance (MR) images. Fuzzy clustering using fuzzy C-means (FCM) algorithm proved to be superior over the other clustering approaches in terms of segmentation efficiency. But the major drawback of the FCM algorithm is the huge computational time required for convergence. The effectiveness of the FCM algorithm in terms of computational rate is improved by modifying the cluster center and membership value updation criterion. In this paper, the application of modified FCM algorithm for MR brain tumor detection is explored. Abnormal brain images from four tumor classes namely metastase, meningioma, glioma and astrocytoma are used in this work. A comprehensive feature vector space is used for the segmentation technique. Comparative analysis in terms of segmentation efficiency and convergence rate is performed between the conventional FCM and the modified FCM. Experimental results show superior results for the modified FCM algorithm in terms of the performance measures.

Published in:

Advance Computing Conference, 2009. IACC 2009. IEEE International

Date of Conference:

6-7 March 2009