By Topic

SoftCuts: A Soft Edge Smoothness Prior for Color Image Super-Resolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shengyang Dai ; Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL ; Mei Han ; Wei Xu ; Ying Wu
more authors

Designing effective image priors is of great interest to image super-resolution (SR), which is a severely under-determined problem. An edge smoothness prior is favored since it is able to suppress the jagged edge artifact effectively. However, for soft image edges with gradual intensity transitions, it is generally difficult to obtain analytical forms for evaluating their smoothness. This paper characterizes soft edge smoothness based on a novel SoftCuts metric by generalizing the Geocuts method . The proposed soft edge smoothness measure can approximate the average length of all level lines in an intensity image. Thus, the total length of all level lines can be minimized effectively by integrating this new form of prior. In addition, this paper presents a novel combination of this soft edge smoothness prior and the alpha matting technique for color image SR, by adaptively normalizing image edges according to their alpha-channel description. This leads to the adaptive SoftCuts algorithm, which represents a unified treatment of edges with different contrasts and scales. Experimental results are presented which demonstrate the effectiveness of the proposed method.

Published in:

IEEE Transactions on Image Processing  (Volume:18 ,  Issue: 5 )