By Topic

Dominant Local Binary Patterns for Texture Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Liao ; Dept. of Comput. Sci. & Eng., The Hong Kong Univ. of Sci. & Technol., Hong Kong ; Max W. K. Law ; Albert C. S. Chung

This paper proposes a novel approach to extract image features for texture classification. The proposed features are robust to image rotation, less sensitive to histogram equalization and noise. It comprises of two sets of features: dominant local binary patterns (DLBP) in a texture image and the supplementary features extracted by using the circularly symmetric Gabor filter responses. The dominant local binary pattern method makes use of the most frequently occurred patterns to capture descriptive textural information, while the Gabor-based features aim at supplying additional global textural information to the DLBP features. Through experiments, the proposed approach has been intensively evaluated by applying a large number of classification tests to histogram-equalized, randomly rotated and noise corrupted images in Outex, Brodatz, Meastex, and CUReT texture image databases. Our method has also been compared with six published texture features in the experiments. It is experimentally demonstrated that the proposed method achieves the highest classification accuracy in various texture databases and image conditions.

Published in:

IEEE Transactions on Image Processing  (Volume:18 ,  Issue: 5 )