Cart (Loading....) | Create Account
Close category search window
 

Wideband Polarimetric Directional Propagation Channel Analysis Inside an Arched Tunnel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ching, G.S. ; Tokyo Inst. of Technol., Tokyo, Japan ; Ghoraishi, M. ; Landmann, M. ; Lertsirisopon, N.
more authors

A wideband directional measurement campaign was managed inside an arched highway tunnel to analyze the radio propagation channel inside such tunnel for future cellular systems in terms of coverage, delay spread and dominant scatterers. Measurements were performed in 3 rounds with different transmitter positions. Using a wideband channel sounder equipped with a cylindrical dual polarized array at the receiver, the spatio-temporal characteristics of the received propagation paths could be estimated by means of a super-resolution estimation algorithm. The extracted paths using this super-resolution algorithm constitute 88% of the total received power. It was also observed that the line-of-sight component (53%) plus single-bounce scattering (26%) comprise up to 79% of the total received power. In other words, more than 90% (i.e. 79% in 88%) of the extracted paths consists of the line-of-sight component and single-bounce scatterings. The strong contribution from single-bounce scattering paths causes the path gain exponent along the tunnel to be larger than -2 which is the value for free space. This validates that there is wave guiding effect in the tunnel and coverage is extended relative to open space. The rms delay spreads are generally less than 20 ns and increase when influenced by scattering objects such as jetfans. The dominant scatterers are identified and classified into 6 classes based on the structure of the tunnel and existing objects such as ground, wall, light-frame, ceiling, jetfan and cleaner-parking. It was observed that scattering from ground was dominant among all classified scatterers in all scenarios.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:57 ,  Issue: 3 )

Date of Publication:

March 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.