Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Graphene Frequency Multipliers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wang, Han ; Microsyst. Technol. Labs., Massachusetts Inst. of Technol., Cambridge, MA ; Nezich, D. ; Kong, Jing ; Palacios, Tomas

In this letter, the ambipolar transport properties of graphene flakes have been used to fabricate full-wave signal rectifiers and frequency-doubling devices. By correctly biasing an ambipolar graphene field-effect transistor in common-source configuration, a sinusoidal voltage applied to the transistor gate is rectified at the drain electrode. Using this concept, frequency multiplication of a 10-kHz input signal has been experimentally demonstrated. The spectral purity of the 20-kHz output signal is excellent, with more than 90% of the radio-frequency power in the 20-kHz frequency. This high efficiency, combined with the high electron mobility of graphene, makes graphene-based frequency multipliers a very promising option for signal generation at ultrahigh frequencies.

Published in:

Electron Device Letters, IEEE  (Volume:30 ,  Issue: 5 )