Cart (Loading....) | Create Account
Close category search window
 

An Equivalent Surface Source Method for Computation of the Magnetic Field Reduction of Metal Shields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bulic, E. ; Fac. of Electr. Eng., Univ. of Ljubljana, Ljubljana ; Sinigoj, A.R. ; Cestnik, Breda

A numerical method for computation of the resultant quasi-static magnetic field in the vicinity of parallel wires and metal shields is presented. The primary magnetic field source is time-harmonic currents in wires. This field is modified by conducting magnetic and/or nonmagnetic shields. The material is assumed to be linear under the applied source field. The shielding effectiveness can be estimated by a comparison between the primary and the resultant field. The reaction magnetic field is expressed by a sum of fields caused by equivalent single- and double-layer sources distributed on the shield surface. Integral equations for unknown distributions of these equivalent sources are derived from the Green's second identity implemented inside and outside the shields. These equations are coupled integral equations, and are solved by the moment method. Numerical results of the resultant (shielded) magnetic field obtained with the proposed method are compared with the results of: 1) analytically solvable problems; 2) measurements; and 3) two different numerical methods.

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:51 ,  Issue: 2 )

Date of Publication:

May 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.