By Topic

Single-Chip Boost Converter Using Monolithically Integrated AlGaN/GaN Lateral Field-Effect Rectifier and Normally Off HEMT

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wanjun Chen ; Dept. of Electron. & Comput. Eng., Hong Kong Univ. of Sci. & Technol., Kowloon ; King-Yuen Wong ; Kevin J. Chen

We demonstrate a single-chip switch-mode boost converter that features a monolithically integrated lateral field-effect rectifier (L-FER) and a normally off transistor switch. The circuit was fabricated on a standard AlGaN/GaN HEMT epitaxial wafer grown with GaN-on-Si technology. The fabricated rectifier with a drift length of 15 mum exhibits a breakdown voltage of 470 V, a turn-on voltage of 0.58 V, and a specific on-resistance of 2.04 mOmegaldrcm2. The L-FER exhibits no reverse recovery current associated with the turn-off transient because of its unipolar nature. A prototype of GaN-based boost converter that includes monolithically integrated rectifiers and transistors is demonstrated using conventional GaN-on-Si wafers for the first time to prove the feasibility of the GaN-based power IC technology.

Published in:

IEEE Electron Device Letters  (Volume:30 ,  Issue: 5 )